{VERSION 4 0 "IBM INTEL NT" "4.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 258 "" 1 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 261 "" 1 14 0 0 0 0 2 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 262 "" 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 264 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 2 2 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 266 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 267 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 268 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 269 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Tim es" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Heading 1" -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 2" -1 4 1 {CSTYLE "" -1 -1 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 2 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 3" -1 5 1 {CSTYLE "" -1 -1 "Ti mes" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Plot " -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 } 3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 4" -1 20 1 {CSTYLE "" -1 -1 "Times" 1 10 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {SECT 1 {PARA 3 "" 0 "" {TEXT -1 16 "Hatlap\372 toroidok" }} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "restart;with(plots):" }}} {SECT 1 {PARA 4 "" 0 "" {TEXT -1 9 "Eszk\366zt\341r" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 366 "a:=array[1..3]:\nb:=array[1..3]:\nc:=array [1..3]:\nvegyesszorzat:= (a,b,c) -> a[1]*b[2]*c[3]\n \+ +a[2]*b[3]*c[1]\n +a[3]*b[1]*c[2]\n \+ -a[3]*b[2]*c[1]\n -a[ 2]*b[1]*c[3]\n -a[1]*b[3]*c[2]:\nsik:= (a,b,c ) -> vegyesszorzat(b-a,c-a,[x-a[1],y-a[2],z-a[3]])=0:" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{SECT 1 {PARA 4 "" 0 "" {TEXT 258 47 "P\351lda h\341rom s\355k metsz\351spontj\341nak ki sz\341m\355t\341s\341ra" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 239 " A1:=[ 5,-2,10]: A2:=[-1,-3, 8]: A3:=[ 3, 4, 5]: h1:=[A1,A2,A3];\nB1:=[ 1,10,-4]: B2:=[-3,12,-7]: B3:=[ 2,12, 3]: h2:=[B1,B2,B3];\nC1:=[10, 5 , 0]: C2:=[ 6,-4,-3]: C3:=[ 4,-2, 4]: h3:=[C1,C2,C3];\npolygonplot3d([ h1,h2,h3],scaling= constrained);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 280 "e:=sik(A1,A2,A3);\nf:=sik(B1,B2,B3);\ng:=sik(C1,C2,C 3);\nm:=solve(\{e,f,g\}):\nassign(m):\nP:=[x,y,z]:\nunassign('x','y',' z'):\nprint(` x= `,P[1],` y = `, P[2],` z = `,P[3]);\nn1:=[P,A1,A2 ,A3];\nn2:=[P,B1,B2,B3];\nn3:=[P,C1,C2,C3];\npolygonplot3d([n1,n2,n3,h 1,h2,h3],scaling= constrained);" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{SECT 1 {PARA 4 "" 0 "" {TEXT -1 10 "Sz\341m\355t \341sok" }}{SECT 1 {PARA 5 "" 0 "" {TEXT -1 18 "A t\363rusz tengely \351t" }{TEXT 259 1 " " }{TEXT 260 6 "metsz\365" }{TEXT 256 1 " " } {TEXT -1 28 "oldal\372 hatsz\366gek el\365\341ll\355t\341sa" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 34 "El\365sz\366r megadjuk a t\363rusz adatai t:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 255 "d:=12: # gy\373r \373 sugara\nr:= 4: # keresztmetszet sugara\np:= 7; # gy\373r\373 \+ lapjainak sz\341ma index: i=0..p-1 \nq:= 3; # keresztmet szet lapjainak sz\341ma index: j=0..q-1 \nf:=Pi/p: g:=Pi/q: # sz \366gek\n dg:= g/2: # kezd\365 \351rt\351k egy k\366r\366n" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 55 "Kisz\341m\355tju k a n\351gysz\366gekb\365l fel\351p\355tett toroid cs\372csait." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 165 "for i from 0 to 2*p-1 do\n for j from 0 to 2*q-1 do\nn[i,j]:=[evalhf((d+r*cos(j*g+dg))*cos(i*f) ),evalhf((d+r*cos(j*g+dg))*sin(i*f)),evalhf(r*sin(j*g+dg))]:\n od;\no d;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 84 "Kisz\341m\355tjuk a hatsz \366gek azon cs\372csait, melyek s\355kok mettsz\351spontjaik\351nt \+ \341llnak el\365." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2045 "H:=a rray(0..p-1,0..q-1):\nK:=array(0..p-1,0..q-1):\nR:=array(0..p-1,0..q-1 ):\nS:=array(0..p-1,0..q-1):\n\n for i from 0 to p-1 do\n for j from 0 to q-1 do\n k:=2*i-1; l:= 2*j;\n\ns1:=sik(n[(k-1) mod 2*p, l \+ mod 2*q],\n n[ k mod 2*p, l mod 2*q],\n n[ k m od 2*p,(l+1) mod 2*q]):\ns2:=sik(n[ k mod 2*p,(l-1) mod 2*q],\n \+ n[(k+1) mod 2*p,(l-1) mod 2*q],\n n[(k+1) mod 2*p,(l ) mod 2*q]):\ns3:=sik(n[(k+1) mod 2*p,(l ) mod 2*q],\n n[(k+2) mod \+ 2*p,(l ) mod 2*q],\n n[(k+2) mod 2*p,(l+1) mod 2*q]):\n m \+ :=solve(\{s1,s2,s3\}):\n assign(m):\n H[i,j]:=[x,y,z];\n u nassign('x','y','z');\n\ns1:=sik(n[(k-1) mod 2*p, l mod 2*q],\n \+ n[ k mod 2*p, l mod 2*q],\n n[ k mod 2*p,(l+1) mod 2*q]):\ns2:=sik(n[ k mod 2*p,(l+1) mod 2*q],\n n[(k+1) mod \+ 2*p,(l+1) mod 2*q],\n n[(k+1) mod 2*p,(l+2) mod 2*q]):\ns3:=sik (n[(k+1) mod 2*p,(l ) mod 2*q],\n n[(k+2) mod 2*p,(l ) mod 2* q],\n n[(k+2) mod 2*p,(l+1) mod 2*q]):\n m :=solve(\{s1,s2, s3\});\n assign(m):\n K[i,j]:=[x,y,z];\n unassign('x','y', 'z'):\n\n k:=2*i; l:= 2*j+1;\n\ns1:=sik(n[(k-1) mod 2*p, l mod 2 *q],\n n[ k mod 2*p, l mod 2*q],\n n[ k mod 2*p ,(l+1) mod 2*q]):\ns2:=sik(n[ k mod 2*p,(l-1) mod 2*q],\n n[ (k+1) mod 2*p,(l-1) mod 2*q],\n n[(k+1) mod 2*p,(l ) mod 2*q]) :\ns3:=sik(n[(k+1) mod 2*p,(l ) mod 2*q],\n n[(k+2) mod 2*p,(l ) mod 2*q],\n n[(k+2) mod 2*p,(l+1) mod 2*q]):\n m :=solv e(\{s1,s2,s3\}):\n assign(m):\n R[i,j]:=[x,y,z];\n unassig n('x','y','z');\n\ns1:=sik(n[(k-1) mod 2*p, l mod 2*q],\n n[ k mod 2*p, l mod 2*q],\n n[ k mod 2*p,(l+1) mod 2*q]) :\ns2:=sik(n[ k mod 2*p,(l+1) mod 2*q],\n n[(k+1) mod 2*p,(l +1) mod 2*q],\n n[(k+1) mod 2*p,(l+2) mod 2*q]):\ns3:=sik(n[(k+ 1) mod 2*p,(l ) mod 2*q],\n n[(k+2) mod 2*p,(l ) mod 2*q],\n \+ n[(k+2) mod 2*p,(l+1) mod 2*q]):\n m :=solve(\{s1,s2,s3 \});\n assign(m):\n S[i,j]:=[x,y,z];\n unassign('x','y','z '):\n od;\n od;" }}}{SECT 0 {PARA 20 "" 0 "" {TEXT -1 12 "Kontroll 2 : " }{TEXT 265 71 "\nMegvizsg\341ljuk, hogy a sz\341m\355t\341sainkhoz j\363l szervezt\374k-e az adatainakat." }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 118 "A t\363ruszt rajzol\363 utas\355t\341ssal nem tudjuk bef oy\341solni, hogy hol kezd\365dj\366n az egy oszlopba rajzolt pontokat meghat\341roz\363 " }{TEXT 266 2 "2q" }{TEXT -1 16 " oldal\372 soksz \366g." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 90 "tubeplot([d*sin(t ),d*cos(t),0],t=0..2*Pi,radius=r,grid=[2*p+1,2*q+1],scaling=constraine d);" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 138 "unas sign('i','j'):\nplot3d([(d+r*cos(j))*cos(i),(d+r*cos(j))*sin(i),r*sin( j)],i=0..2*Pi,j=0..2*Pi,scaling= constrained,grid=[2*p+1,2*q+1]);" } {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 62 "A fenti k\351t ut as\355t\341snak ugyanolyan rajzot kell eredm\351nyeznie. " }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 47 "Az al\341bbiak is \+ ilyen alakzatot \341ll\355tan\341nak el\365 " }{TEXT 268 4 "dg=0" } {TEXT -1 61 " esetben, de ez nem lenne alkalmas a hatsz\366gek el\365 \341ll\355t\341s\341ra." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 147 "unassign('i','j'):\nplot3d([(d+r*c os(j+dg))*cos(i),(d+r*cos(j+dg))*sin(i),r*sin(j+dg)],i=0..2*Pi,j=0..2* Pi,scaling= constrained,grid=[2*p+1,2*q+1]);" }}{PARA 13 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 193 "negyzet:=[ seq(seq(\n [n[i , j ],\n n[i ,( j+1) mod 2*q],\n n[(i+1) mod 2*p ,(j+1) mod 2*q],\n n[(i+1) mod \+ 2*p ,j ]]\n,i=0..2*p-1),j=0..2*q-1)]:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "polygonplot3d(negyzet,scaling=constrained);" }}{PARA 13 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 38 "Az ut\363bbi k\351t rajzon m\341r \351rv\351nyes\374l a " }{TEXT 269 3 "dg " }{TEXT -1 20 "nagys\341g\372 elfordul\341s." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 238 "fele:=[seq(seq(\n [n[i \+ ,(2*j +(i mod 2)) mod 2*q ],\n n[i ,(2*j+1+(i mod 2)) mod 2*q ],\n n[(i+1) mod 2*p,(2*j+1+(i mod 2)) mod 2*q ],\n n[( i+1) mod 2*p,(2*j +(i mod 2)) mod 2*q ]]\n ,i=0..2*p-1),j=0..q-1)]: " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "racs:=polygonplot3d(fel e,scaling=constrained):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "r acs;" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 145 "HK: =polygonplot3d([seq(seq(\n[ H[i,j],K[i,j]] \n,i=0..p-1),j=0..q-1)]) :\nRS:=polygonplot3d([seq(seq(\n[ R[i,j],S[i,j]] \n,i=0..p-1),j=0.. q-1)]):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "display([racs,HK ,RS],scaling= constrained);" }}{PARA 13 "" 1 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 57 "Itt m\341r berajzoltuk az \372jonn an keletkezett hatsz\366g\351leket." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {SECT 0 {PARA 20 "" 0 "" {TEXT -1 13 "T(6,3) toroid" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 217 "hatszog:=[seq(seq(\n [ [R[i,j],K[i,j],H[ i,j], \n S[i,(j-1) mod q],H[(i+1) mod p,j],K[(i+1) mod p,j]],\n \+ [H[i,(j+1) mod q],S[(i-1) mod p,j],R[(i-1) mod p,j],\n K[i,j], R[i,j],S[i,j]]]\n ,i=0..p-1),j=0..q-1)]:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "polygonplot3d(hatszog,scaling= constrained):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 214 "ketsor:=[seq(seq(\n[ [R[i,j],K[i,j],H[i,j], \n \+ S[i,(j-1) mod q],H[(i+1) mod p,j],K[(i+1) mod p,j]],\n [H[i,(j+1 ) mod q],S[(i-1) mod p,j],R[(i-1) mod p,j],\n K[i,j],R[i,j],S[i,j ]]] \n,i=0..0),j=0..q-1)]:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "polygonplot3d(ketsor,scaling= constrained);" }}{PARA 13 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 521 "szin:=[red,green, blue,yellow, pin k,aquamarine, cyan, grey,white,black]:\n for s from 1 to 7 do\negyszin :=[seq(seq(\n[ [R[(i-j) mod p,j],K[(i-j) mod p,j],H[(i-j) mod p,j], \n S[(i-j) mod p,(j-1) mod q],H[(i+1-j) mod p,j],K[(i+1-j) mod p,j] ],\n [H[(i-j) mod p,(j+1) mod q],S[(i-1-j) mod p,j],R[(i-1-j) mod \+ p,j],\n K[(i-j) mod p,j],R[(i-j) mod p,j],S[(i-j) mod p,j]]] \+ \n,i=s..s),j=0..q-1)]:\n\nt[s]:=polygonplot3d(egyszin,color=szin[s],sc aling=constrained):\nod:\nszines:=display3d(seq(t[i],i=1..7),insequenc e=false):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "szines;" }{TEXT -1 0 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "t[1];" }{TEXT -1 0 "" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{SECT 1 {PARA 4 "" 0 "" {TEXT -1 10 " VRML f \341jl" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 83 "with(plottools):\n vrml(szines,`63T7_3.wrl`,\n background_color=COLOR(RGB,0,1,1));" } }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{SECT 1 {PARA 5 "" 0 "" {TEXT 264 28 "Egy eredm\351nytelen k\355s\351rlet: " }{TEXT 262 21 "\nA t\363rusz tengely\351re " }{TEXT 261 9 "mer\365leges" }{TEXT 263 29 " oldal\372 hatsz\366gek el\365\341ll\355t\341sa" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 255 "d:=10: # gy\373r\373 sugara\nr:= 3: # \+ keresztmetszet sugara\np:= 3; # gy\373r\373 lapjainak sz\341ma \+ index: i=0..p-1 \nq:= 5; # keresztmetszet lapjainak sz\341ma \+ index: j=0..q-1 \nf:=Pi/p: g:=Pi/q: # sz\366gek\n dg:= g/2: # kezd\365 \351rt\351k egy k\366r\366n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"pG\"\"$" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"qG\" \"&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2387 "for i from 0 to 2* p-1 do\n for j from 0 to 2*q-1 do\nn[i,j]:=[evalhf((d+r*cos(j*g+dg)) *cos(i*f)),evalhf((d+r*cos(j*g+dg))*sin(i*f)),evalhf(r*sin(j*g+dg))]: \n od;\nod;\nH:=array(0..p-1,0..q-1):\nK:=array(0..p-1,0..q-1):\nR:=a rray(0..p-1,0..q-1):\nS:=array(0..p-1,0..q-1):\n\n for i from 0 to p-1 do\n for j from 0 to q-1 do\n\n k:=2*i-1; l:= 2*j;\n\ns1:=sik(n[ (k-1) mod 2*p, l mod 2*q],\n n[ k mod 2*p, l mod 2*q], \n n[ k mod 2*p,(l+1) mod 2*q]): \ns2:=sik(n[ k mod 2*p,(l-1) mod 2*q],\n n[(k+1) mod 2*p,(l-1) mod 2*q],\n n[(k+1) mod 2*p, l mod 2*q]):\ns3:=sik(n[ k mod 2*p,(l+1 ) mod 2*q],\n n[(k+1) mod 2*p,(l+1) mod 2*q],\n n[(k+1) \+ mod 2*p,(l+2) mod 2*q]): \n \n m :=sol ve(\{s1,s2,s3\}):\n assign(m):\n H[i,j]:=[x,y,z];\n unassi gn('x','y','z');\n \ns1:=sik(n[(k+1) mod 2*p, l mod 2 *q],\n n[(k+2) mod 2*p, l mod 2*q],\n n[(k+2) mod 2*p ,(l+1) mod 2*q]): \ns2:=sik(n[ k mod 2*p,(l-1) mod 2*q ],\n n[(k+1) mod 2*p,(l-1) mod 2*q],\n n[(k+1) mod 2*p, \+ l mod 2*q]):\ns3:=sik(n[ k mod 2*p,(l+1) mod 2*q],\n n[(k +1) mod 2*p,(l+1) mod 2*q],\n n[(k+1) mod 2*p,(l+2) mod 2*q]): \+ \n m :=solve(\{s1,s2,s3\});\n assign(m):\n K [i,j]:=[x,y,z];\n unassign('x','y','z'):\n\n k:=2*i; l:= 2*j+1 ;\n\ns1:=sik(n[(k-1) mod 2*p, l mod 2*q],\n n[ k mod 2*p, l mod 2*q],\n n[ k mod 2*p,(l+1) mod 2*q]): \+ \ns2:=sik(n[ k mod 2*p,(l-1) mod 2*q],\n n[(k+1) mod 2*p,(l -1) mod 2*q],\n n[(k+1) mod 2*p, l mod 2*q]):\ns3:=sik(n[ k \+ mod 2*p,(l+1) mod 2*q],\n n[(k+1) mod 2*p,(l+1) mod 2*q],\n \+ n[(k+1) mod 2*p,(l+2) mod 2*q]): \n \+ \n m :=solve(\{s1,s2,s3\}):\n assign(m):\n R[i,j]:=[x,y,z ];\n unassign('x','y','z');\n \ns1:=sik(n[(k+1) mod 2*p, l mo d 2*q],\n n[(k+2) mod 2*p, l mod 2*q],\n n[(k+2) mod \+ 2*p,(l+1) mod 2*q]): \ns2:=sik(n[ k mod 2*p,(l-1) mod \+ 2*q],\n n[(k+1) mod 2*p,(l-1) mod 2*q],\n n[(k+1) mod 2* p, l mod 2*q]):\ns3:=sik(n[ k mod 2*p,(l+1) mod 2*q],\n n [(k+1) mod 2*p,(l+1) mod 2*q],\n n[(k+1) mod 2*p,(l+2) mod 2*q] ): \n m :=solve(\{s1,s2,s3\});\n assign(m):\n \+ S[i,j]:=[x,y,z];\n unassign('x','y','z'): \n od;\n \+ od;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 289 "hatszog:=[seq(seq( \n [ [S[(i-1) mod p,j],H[i,j],K[i,j], \n R[i,j],K[i,(j+1) mod q ],H[i,(j+1) mod q]],\n [K[i,(j+1) mod q],R[i,j],S[i,j],\n H[( i+1) mod p,(j+1) mod q],S[i,(j+1) mod q],\n R[i,(j+1) mod q]]]\n \+ ,i=0..p-1),j=0..q-1)]:\npolygonplot3d(hatszog,scaling= constrained);" }}{PARA 13 "" 1 "" {GLPLOT3D 400 300 300 {PLOTDATA 3 "62-%)POLYGONSG6$ 7(7%$\"+2$z_O$!\"*$!+k/1/'*F*$\"+l>5aLF*7%$\"+/m&G%oF*$!+Rn,T5!\")$\"+ ;!\\H2#F*7%$\"+s(*oV7F4$!+&fR+@(!#5F57%$\"+\"*********F*$\"+jGh()=F*$ \"+o>5aLF*7%F>$\"+VGh()=F*$\"+k>5aLF*7%$\"+8$z_O$F*$!+h/1/'*F*FG7(FDF= 7%$\"+(o?Zj'F*$\"+*fZkr(F*$\"+n>5aLF*7%$\"+t1sMmF*$\"+1wW;xF*FG7%$\"+% RVr:$F*$\"+#oS.\"pF*$\"+=!\\H2#F*7%$\"+yA5jvF*$!+%fR+@(F<$\"+>!\\H2#F* -F$6$7(FO7%$\"+:6/%f&F*$\"+Nr686F4$\"+9!\\H2#F*7%$!+>6/%f&F*FioF[p7%$! +$p?Zj'F*FRFT7%$!+z1sMmF*FYFGFV7(FcpF`p7%$!+(*********F*F@FB7%Fhp$\"+ \\Gh()=F*F-7%$!+\"G-Jc(F*$!+p&R+@(F5aLF*7%$\"+9 $z_O$F*F+F\\y7(FgxFcuF\\u7%$\"+*o?Zj'F*$\"+3wW;xF*$!+m>5aLF*Fby7%Fhx$ \"+lGh()=F*$!+n>5aLF*-F$6$7(F\\uFdtF[vF^w7%FdpFeyFgyFby7(FazF^wFgv7%$! +%*********F*F[qFgy7%Fdz$\"+xGh()=F*$!+r>5aLF*7%$!+*p?Zj'F*$\"+'fZkr(F *Fiz-F$6$7(FgvF_vFfwFax7%$!+7$z_O$F*$!+m/1/'*F*FgyFcz7(Fc[lFaxF\\xF^y7 %$\"+3$z_O$F*$!+o/1/'*F*Fgy7%$!+5$z_O$F*F\\\\lFgy-F$6$7(Fi[lF^yFgxFiy7 %$\"+t(*oV7F4$!+T&R+@(F6/%f &F*FioFau7%$\"+On7+rF*Fio$!+>8e0LFfv7%$\"+`S**=8F4$\"+(\\WI$eF<$!+yD_= QFfv-F$6$7(FbyFbyFazF[[l7%$!+B6/%f&F*FioFauF]]l7(F_^lF[[lFfz7%$!+t(*oV 7F4$!+i%R+@(F " 0 "" {MPLTEXT 1 0 0 "" }}}}}}{MARK "0" 0 }{VIEWOPTS 1 1 1 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }