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Abstract

The considered coupled task problem (CTP) is to schedule n jobs, each

consisting of two (sub)tasks, on a single machine. Exact delay times are

between the subtasks of a job and the makespan has to be minimized. It

has been proven that the problem is strongly NP-hard in general case (see

[11]), even if the lengths of the subtasks are identical. This paper considers

a special case of CTP where there are jobs with two different delay times

only. The complexity status of this problem is unknown. We will present

an algorithm – called First Fit Decreasing (FFD) – and we will prove that

its approximation ratio is in the interval (1.57894, 1.57916).
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1J. Békési was supported by the EU-funded Hungarian grant [grant number EFOP-

3.6.2-16-2017-00015]; and the National Research, Development and Innovation Office NK-
FIH [grant number SNN 129178].

2Gy. Dósa was supported by the EU-funded Hungarian grant [grant number EFOP-
3.6.1-16-2016-00015]; and the National Research, Development and Innovation Office NK-
FIH [grant number SNN 129364].

Preprint submitted to European Journal of Operational Research February 2, 2021



Keywords: Combinatorial optimization, Scheduling, Approximation

algorithm

1. Introduction

The single-machine coupled task problem (CTP) is defined as follows: A

set of jobs is given by In = {J1, J2, . . . , Jn}, each of them consisting of two

tasks, which are denoted by {a1, a2, . . . , an} and {b1, b2, . . . , bn}, respectively.

Tasks have to be executed in a given sequence and an exact delay time (idle

time) – li, (i = 1, . . . , n) – is required between their executions. For job Ji

the processing times of the two tasks will be denoted by p(ai) and p(bi), resp.

The machine can process at most one task at a time and no preemption is

allowed. In a solution for job Ji s(ai) and s(bi) denote the starting times

of the two tasks, and a solution is given by the first task’s starting time of

each job. The completion time of Ji is c(Ji) = s(ai) + p(ai) + li + p(bi). A

solution – also called schedule – is feasible, if for any time-slot at most one

task is performed by the machine. The quality of a (feasible) solution σ is

evaluated by the maximum completion time (also called makespan):

Cσmax = max{c(Ji)|Ji ∈ In}.

The objective is to find a feasible schedule that minimizes the maximum

completion time.

We will usually refer to jobs and tasks just by their indices and – in order

to simplify notations – we will use the identical notations ai and bi for the

processing times of the tasks.

The CTP appears in numerous practical problems. The most citations

can be found for pulsed radar systems where a radar has to keep track of

different targets by transmitting a pulse, and receiving its reflection (see eg.

[11]). The interval between the transmission and reception depends on the

distance of the target. Similar examples from the field of agriculture and

chemistry can also be cited ([1], [2]).
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1.1. Related Works

It is apparent that the pioneer complexity paper of Orman and Potts

([11]) gave an intensive movement to the research of this topic, and an

extensive study of the CTP with different objective functions has there-

fore been developed in last few years. Recently, a state of art survey was

published by Khatami et al. in [9], which is adequate for establishing the

knowledge of the enquirer reader. For the general case, we will use the stan-

dard three-field notation – introduced by Graham et al. [7] – as follows:

1|Coup-Task, exact li|Cmax.

The complexity of this problem was deeply analyzed in [11] and – in

the general case – shown to be strongly NP-hard. To avoid technical com-

plications for special cases in which all jobs are identical, in their paper

[11] Orman and Potts assumed that processing times and idle times are in-

puts for all jobs, thus they gave an input size of O(n) rather than O(log n).

The latter scheduling papers accepted this assumption, and we also use this

condition for all inputs. The problem remains NP-hard even in numerous

special cases where there are restrictions either for the processing times of

the tasks or for the delay times, and only a few of them can be solved in

polynomial time (see [10], [11]). One exception to a rule is the Identical Cou-

pled Task Problem (ICTP) where ai = a, li = L, and bi = b for each job.

This problem was studied extensively later and different pseudo-polynomial

algorithms have been developed, – e.g. [4], [5] – but its complexity is still

open.

For NP-hard CTP problems, different approximation algorithms have

been developed, and their effectiveness are measured by the performance

ratio which is defined as follows. Let In be an instance of n jobs. Denote

by CAmax(In) and C∗max(In) the makespans produced by algorithm A and an

optimal schedule of In, respectively. Algorithm A is called ρ-approximation
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algorithm for some ρ ≥ 1 if

CAmax(In) ≤ ρ C∗max(In)

for every instance of jobs. The smallest possible value ρ is called worst-case

(performance) ratio of algorithm A, and is denoted by ρA.

We summarized the recent results concerning the approximation algo-

rithms for different NP-complete problems in Table 1. As the table shows

there is only one algorithm which is concerned with the general case, and

most of the algorithms give only upper bounds for the performance ratios.

The non-approximability results concerning the different cases are also in-

cluded the table.

problem ρ(A) T.compl. inapprox. ref.

lj , aj , bj ≤ 3.5 O(n log n) 2− ε [3]

lj , aj ≤ bj ≤ 3 O(n log n) 2− ε [3]

lj , aj = bj ≤ 2.5 O(n log n) 2− ε [3]

lj = L, aj , bj ≤ 3 O(n log n) 1.5− ε [2]

lj = L, aj ≤ bj ≤ 2 O(n log n) 1.5− ε [2]

lj = L, aj = bj ≤ 1.5 O(n log n) 1.25− ε [2]

lj , UET = 1.75 O(n log n) [1], [6]

lj ∈ {L1, L2}, UET [1.5789, 1.5791) O(n) this paper

Table 1. Worst case performances of analysed approximation algorithms

1.2. Our Results

Among the special cases, in [11] the problem 1|Coup-Task, exact li, ai =

bi = p|Cmax was also examined. Orman et al. proved that for these inputs

the problem is NP-hard if the delay times are arbitrary. If we suppose

that ai = bi = 1, then we call this problem Unit Execution Time – UET –

problem.)
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For the case 1|Coup-Task, exact li = L, ai = bi = p|Cmax Orman and

Potts proved that the problem is in P, and gave an optimal algorithm

with time complexity O(n). (The exact description of the algorithm see

later.) Similarly to the ICTP, the complexity of 1|Coup-Task, exact li ∈

{L1, L2}, ai = bi = p|Cmax is still open. Here, L1 and L2 denote two dif-

ferent delay times. In this paper, we investigate this problem. The basis of

our motivation is that in practical problems there are almost always special

conditions. In the case of an aircraft-carriers, there is a bounded number

of airplanes with different ranges, and it is plausible that only two differ-

ent planes are used in a deployment. As another example let us consider

the car production assembly-line. If we suppose, that during the polishing

process, two different phases are required and two basic types of polish-

ing row-materials exist (metal and normal), then the schedule can also be

handled by such model.

We introduce the First-Fit Decreasing (FFD) approximation algorithm

for the problem

1|Coup-Task, exact li ∈ {L1, L2}, ai = bi = 1|Cmax.

The FFD algorithm was originally defined by D. S. Johnson [8] as a

bin packing approximation algorithm. We define the appropriate version of

this algorithm to our problem in consideration. Naturally, the algorithm is

designed to solve problems with arbitrary number of different delays but in

this paper we will investigate it only for the UET problem with two distinct

delays among tasks.

Algorithm First-Fit Decreasing

Step 1. Sort the jobs in nonincreasing order according to the idle times.

After ordering we suppose that l1 ≥ l2 ≥ . . . ≥ ln. i = 1.

Step 2. Schedule job Ji from the earliest time which results in a feasible

schedule.
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Step 3. i = i+ 1. If i ≤ n then goto Step 2. Otherwise END.

The ordering in Step 1 needs O(nlogn) time (also for arbitrary number of

different delay times). In Step 2, at any time during the scheduling process,

we store (in a vector) that what time-slots are occupied and what time slots

are free. For any new job this needs only O(1) time. Finally, finding the

first possible starting time for any new job needs at most O(n) time. In

fact, if we have only two distinct delays, we need much less time for this.

For the first subset of jobs with the bigger delay, if we want, it is possible to

determine the exact place of the jobs in advance by a formula. Then, only at

most l1 jobs from the second subset of jobs with smaller delay need a more

careful treatment to find their exact places, and the subsequent smaller jobs

can be placed again easily.

Omitting the details, we find that the time complexity of the algorithm

is at most O(n2).

We will investigate the algorithm FFD from the worst-case point of view,

and prove that

1.57894 . . . ≈ 30

19
≤ ρFFD <

√
11 + 3

4
≈ 1.57916 . . . .

In what follows, in Section 2, we start with preliminaries, where we give

some basic definitions and show the lower bounds that will be used in the

proofs. Section 3 deals with instances with equal delays. We prove that

the FFD gives an optimal solution to this problem, and we give the exact

value of the makespan. Section 4 contains the complete analysis of FFD for

the instances that have two different delay times. Finally, we provide some

concluding remarks in Section 5.

2. Preliminaries

Hereinafter we will consider UET problems. Let us consider an arbitrary

feasible schedule σ. We will say that in σ Ji and Jj are consecutive if
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s(bi) < s(aj), the jobs are nested if s(ai) < s(aj) < s(bj) < s(bi), and the

jobs are interleaved if s(ai) < s(aj) < s(bi) < s(bj).

A similar definition can be done for the set of jobs: e.g. let S1 and S2

be sets of jobs. In schedule σ S2 is nested in S1 if ∀Ji ∈ S1 and ∀Jj ∈ S2,

s(ai) < s(aj) < s(bj) < s(bi).

If a task is performed in the time-period [i−1, i], then we say that the task

occupies the position i. In schedule σ the subset {Ji, . . . , Jm} of interleaved

jobs form a block, if ∀j, k, i ≤ j < k ≤ m, Lj = Lk, and s(aj) < s(ak). Jobs

Ji and Jm are the first- and the last-item of the block, resp. We call the sum

of the remaining idle times within a block gap. If there is no gap within the

block, then we say that the block is complete, otherwise it is incomplete.

From the literature, there are some lower bounds known to estimate the

optimal schedule for the CTP.

C ∗max(In) ≥ LB1 = 2n. (1)

The next one gives an improvement for those cases where
∑
li ≥ n(n − 1)

(see [6]).

C ∗max(In) ≥ LB2 = 2n +
⌈1

n

( n∑
i=1

li − n(n − 1 )
)⌉
. (2)

If we apply the lower bound (2) for inputs with two different delays we can

use the following estimation.

C ∗max(In) ≥ LB3 = n1 + n2 +
n1L1 + n2L2

n1 + n2
+ 1 , (3)

where n1 and n2, respectively, mean the number of large and small jobs.

At the end, if we have inputs with two different delays then the first part

of the input – with n1 jobs and L1 delays – gives also a lower bound.

C ∗max(In) ≥ LB4 = n1 + L1 + 1 . (4)
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3. Theorems for scheduling jobs with equal delays

Let In be an instance with jobs of equal delay times, and let us denote the

common delay time by L. Such instance will be called L-uniform instance.

We will say that the subset {Ji, . . . , Jm} of jobs are continuously scheduled

if ∀j, i ≤ j < m, s(aj+1) = s(aj) + 1. It is clear that for an L-uniform

instance FFD schedules the items in a block continuously. Furthermore,

let Jk and Jk+1 be the last item of block B, and the first item of block

B + 1, respectively. Then if s(bk) + 1 = s(ak+1), then the two blocks are

also continuously scheduled.

Let In be an L-uniform instance. Let k = bn/(L+ 1)c, and n = nc +nr,

where nc = k(L+1), and nr = n−k(L+1) ≤ L. In [11] an optimal algorithm

has been defined for the problem 1|CTP, ai = bi = p, li = L|Cmax. If we

apply this algorithm for the case ai = bi = 1, then we get the following

algorithm.

Algorithm Greedy

Step 1. Compute k = bn/(L+ 1)c.

Step 2. Form k (complete) blocks of jobs, where each block contains L+ 1

jobs.

Step 3. If nr > 0, then form an incomplete block containing all the remain-

ing jobs where the first tasks are scheduled continuously.

Step 4. Schedule the complete blocks and the incomplete blocks – if any –

continuously.

This algorithm in [11] has been analysed and it was proven to provide an

optimal schedule. The value of C ∗max(In) was not given. Here, we give a

simpler – but more formalized – proof for this theorem, and we give C ∗max(In)

explicitly.
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Theorem 3.1. Algorithm Greedy generates an optimal schedule for the

1|Coup− Task, ai = bi = 1, li = L|Cmax problem in O(n) time, and

C ∗max(In) =

 k(L+ 1) + n, if nr = 0;

(k + 1)(L+ 1) + n, otherwise.

Proof. We already know that Greedy generates an optimal schedule, so we

prove only the validity of the formula.

First consider the case when all blocks are complete, i.e. nr = 0. Then

C ∗max(In) = 2k(L + 1 ) and n = k(L+ 1) thus the claim holds.

Now suppose that the last block is not complete. The contribution of k

complete blocks to the makespan is 2(L+ 1)k. The length of the last block

is L+ 2 + (nr − 1) where nr = n− k(L+ 1). Thus we get

C ∗max(In) = 2(L+ 1)k + L+ 2 + n− k(L+ 1)− 1

= 2(L+ 1)k + L+ 1− k(L+ 1) + n

= (k + 1) (L+ 1) + n.

Since for L-uniform instances an FFD schedule is identical to Greedy, the

following corollary is a consequence of Theorem 3.1.

Corollary For L-uniform instances

CFFDmax (In) =

 k(L+ 1) + n, if nr = 0;

(k + 1)(L+ 1) + n, otherwise.
(5)

We realize that CFFDmax (In) is a function of n, and L. Let us denote this

function by

CFFDmax (In) = f(n,L). (6)

Considering the formula of (5), we see that moving from n to (n+1), f(n,L)

grows by 1 if the last block is not complete (for n), otherwise (if the last

block is complete for n) the value of (5) is growing by L+ 2. In both cases,
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by n→ (n+1), the value of (5) is growing by at least 1. Thus, if we increase

n by d ≥ 1, the value of (5) is growing by at least d. Thus we have

f(n− d, L) ≤ f(n,L)− d (7)

for any 1 ≤ d ≤ n.

4. Theorems for two different delays

Hereinafter, we suppose that instances contain only jobs with two dif-

ferent delay times L1 and L2, where L1 > L2. Jobs with delay time L1, or

L2 are called long, or short, resp. Let In = (I1, I2) be the concatenation of

instances I1 and I2, with n1 long and n2 short jobs (n = n1 + n2), resp. To

avoid the complicated notations sometimes we write instead of In simply I.

If we have two different delay times, then Step 1. in algorithm FFD can

be performed in O(n) time creating two ”heaps” for the long and short jobs,

respectively.

In Section 2 we defined the set of interleaved jobs. If we have jobs with

two different gaps, then a (set) of short jobs can be in interleaved position

either with a (set) of long jobs or with a (set) of short jobs. In these cases,

we speak about long-interleaved or short-interleaved jobs, resp. If for a short

job Ji, s(ai) > s(bn1) (i > n1,) then we call the job long-consecutive.

Figure 4.1: An example for two different types of interleaved short jobs. Boxes denote

the long jobs and circles correspond to short jobs.

We define the algorithm Separate, denoted by SEP. This algorithm applies

the FFD rule independently for the subinstances I1, and I2, and concate-

nates the two schedules.
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Algorithm Separate

Step 1. t = 1. Schedule all jobs in I1 from the position t using FFD.

Step 2. t = CFFDmax (I1) + 1. Schedule all jobs in I2 starting at position t by

the algorithm FFD.

First, we prove a simple Claim that we use several times thereinafter.

Claim 4.1. If the FFD schedule of input In contains long-interleaved short

jobs, and there is at least one empty position just after the second task of

the last long job, then the idle time (denoted by τ) in the FFD schedule is

at most L2.

Proof. During the proof we use the following – easily provable – facts. If

the conditions are true then

(a) there is at least one nested complete short block,

(b) there is no incomplete nested short block,

(c) the first long-interleaved short job starts just after the second task of the

last nested short job. (See Figure 4.2.)

Because of the conditions, there is at least one empty position just after

the second task of the last long job. Let us denote the number of complete

nested blocks of short jobs by n2,cn. There are two cases.

Case A. Suppose that n2 ≥ (L1 − n1 + 1)− 2(L2 + 1)n2,cn.

In this case, the gap within the incomplete long block will be filled with

nested jobs and the first tasks of interleaved short jobs. Therefore, there

is no gap within the incomplete block of the long jobs. So, idle time can

occur only after the incomplete block of the long jobs. By this reason,

the sum of idle times in the FFD schedule – independently whether or not

long-consecutive short jobs exist – is at most L2.

Case B. Suppose that n2 < (L1 − n1 + 1)− 2(L2 + 1)n2,cn.
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Now, there is no long-consecutive short job. A gap remains within the

incomplete block of the long jobs, and there is also an idle time after the

second task of the last long job. Let us denote these gaps by τ1, and τ2,

resp. Both gaps start up within the two tasks of the first interleaved short

job (see Figure 4.2), thus τ = τ1 + τ2 < L2.

Lemma 4.1. For any input I with two different delays CSEPmax (I) ≥ CFFDmax (I).

Proof. For scheduling the long jobs FFD and SEP are identical, so CFFDmax (I1) =

CSEPmax (I1). Furthermore, the two algorithms remain identical if there are only

complete blocks from long jobs. So we can suppose that an incomplete block

from long jobs exists. Let us apply the equality (6) for the instances I1 and

I2 with parameters (n1, L1), and (n2, L2) We get

CSEPmax (I) = CFFDmax (I1) + CFFDmax (I2) = f(n1, L1) + f(n2, L2) = t+ f(n2, L2).

Denote the number of nested short jobs by n2,ne ≥ 0. Now we distinguish

several cases.

Case A. There is no (long-)interleaved short job. Then FFD schedules

n2 − n2,ne jobs from time t, so

CFFDmax (I) = t+ f(n2 − n2,ne, L2) ≤ t+ f(n2, L2)− n2,ne ≤ CSEPmax (I).

Case B. There is at least one long-interleaved short job. Suppose the

last interleaved short job ends at position p > t. It follows that positions

j = t, ..., p − 1 are either idles or they are occupied by the second tasks of

some interleaved short jobs.

Case B.1. There is no empty position between t and p− 1. This means

that there are n2,i = p− t interleaved short jobs.

Let n2,lc ≥ 0 be the number of long-consecutive short jobs. Since there

are also n2,ne nested small jobs, n2,lc = n2−n2,ne−n2,i. The long-consecutive
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short jobs are scheduled by FFD from position p. Then

CFFDmax (I) = p+ f(n2 − n2,ne − (p− t), L2) ≤ p+ f(n2, L2)− n2,ne − (p− t)

= t+ f(n2, L2)− n2,ne ≤ SEP (I).

Case B.2. There is at least one empty position between t and p− 1. Now,

we can use the Claim 4.1, and so, τ ≤ L2.

In this case the first interleaved short job ends strictly later than t+ 1,

and the incomplete long block will be filled with nested jobs and the first

tasks of interleaved short jobs. By this reason, the sum of idle times in the

FFD schedule is at most L2.

On the other hand, in the SEP schedule all positions in the gap of the

incomplete long block remain idle. Since in the FFD schedule there is at

least one complete block of nested jobs, the length of the gap is at least

2(L2 + 1) > L2. Thus the total length of idle intervals in the SEP schedule

is bigger than L2. Then clearly CFFDmax (I) < CSEPmax (I).

4.1. Upper bounds

In this subsection, we give an upper bound for the performance ratio

of FFD. This ratio depends strongly on the structure of an instance i.e.

does the FFD schedule contain complete blocks, are there nested short

jobs, or interleaved short jobs, etc? We will investigate FFD schedules

with different structures. In the following, if for two instances I and I ′,

CFFDmax (I)/C ∗max(I ) ≤ CFFD
max (I ′)/C ∗max(I ′), then we say that CFFDmax (I ′) dom-

inates CFFDmax (I). Our upper bound proof will be divided into three parts.

- First, we will consider instances for which CFFDmax (I)/C ∗max(I ) ≤ 3
2 .

- Secondly, we investigate inputs for which there is a dominant instance

with a given structure.

- Finally, we give an upper bound for the set of dominant instances.
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In the sequel, we will use the following notations. Let kb, ks, rb, and rs

be such integers, for which n1 = kb(L1 + 1) + rb where 1 ≤ rb ≤ L1 and

n2 = ks(L2 + 1) + rs where 0 ≤ rs ≤ L2. Then

kb(L1 + 1) = n1 − rb and ks(L2 + 1) = n2 − rs. (8)

4.1.1. Inputs with performance ratio at most 3
2 .

Lemma 4.2. If I is such an input for which there is at least one complete

block of long jobs in the FFD schedule, then CFFD
max (I)
C∗max(I )

≤ 3/2.

Proof. Since there is a complete block of long jobs, we have

L1 + 1 ≤ n1. (9)

Applying (6) for the instances I1 and I2 separately, and taking into account

that for L-uniform instances CFFDmax (I) = CSEPmax (I), we get that

CSEPmax (I) = f(n1, L1) + f(n2, L2). (10)

On the other hand, applying Theorem 3.1 for I1, we have

C ∗max(I ) ≥ C ∗max(I 1 ) = f (n1 ,L1 ).

Case A. If ks = 0 (i.e. there is no complete block of short jobs in the

SEP schedule), then we first apply the lower bound (4). Then using the

inequality (9) and the lower bound (1), we have

CSEPmax (I)− C ∗max(I ) ≤ f(n2, L2) = L2 + 1 + n2

≤ L1 + n2 < n1 + n2 = n ≤ C ∗max(I )/2 ,

thus CSEPmax (I) ≤ (3/2)C ∗max(I ) and we are done. Case B. If ks > 0 (i.e.

there is at least one complete block also from the short jobs in the SEP

schedule), then

L2 + 1 ≤ n2. (11)
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Let us start with (10) and apply (8)- (11). Then we get

CSEPmax (I) = f(n1, L1) + f(n2, L2)

≤ (kb + 1)(L1 + 1) + n1 + (ks + 1)(L2 + 1) + n2

= n1 − rb + (L1 + 1) + n1 + n2 − rs + (L2 + 1) + n2

≤ 2n1 + (L1 + 1) + 2n2 + (L2 + 1) < 3n1 + 3n2 = 3n

≤ (3/2)C ∗max(I )

where the last inequality follows from the lower bound (1).

Lemma 4.3. Let us suppose that kb = 0, i.e. there is no complete block

from the big jobs. If there is at least one complete block of short jobs, then

CFFD
max (I)
C∗max(I )

≤ 3/2.

Proof. Let us denote the number of short jobs in complete blocks by n2,c.

Then

n2 ≥ n2,c ≥ L2 + 1. (12)

If all of the short jobs are nested jobs then the FFD schedule is optimal. So,

we can suppose that there is at least one short job i with s(bi) ≥ s(bn1) + 1.

Let us denote the sum of idle times in the FFD schedule by τ. If τ ≤ n then

CFFDmax (I) ≤ 3n. Thus it is enough to show that τ ≤ n.

Case A. There is at least one long-interleaved short job, and these jobs are

scheduled so that the second tasks are not consecutive to the last task of the

long jobs (see Figure 4.2). Now, we apply Lemma 4.1, which results that

τ ≤ L2. From (12) we get L2 < n2 < n. Therefore τ < n, and we are done.

Case B. There is at least one long-interleaved short job, and these jobs are

scheduled so that the second tasks are consecutive to the last task of the

long jobs. This schedule of the interleaved jobs does not result in gap just

after the second task of the last long job (see Figure 4.3).
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Figure 4.2: Schedule of short interleaved jobs if second tasks are not consecutive.

Let us consider the tasks which are scheduled in the gap of the last long-

interleaved short job. These tasks are the second tasks of the last incomplete

block of nested jobs (if any), the second tasks of the long jobs and second

tasks of the long-interleaved jobs except the last one. Since there is no gap

within this time interval, here there are L2 tasks. Note that we also have

at least one complete block of L2 + 1 short jobs (which are nested jobs or

long-consecutive jobs), and these jobs belong to another subset of I2. This

means, that the number of jobs is at least n ≥ 2L2 + 1.

Figure 4.3: Schedule of short interleaved jobs if first tasks are consecutive.

On the other hand, gap (idle time interval) can happen only in the incom-

plete block of long-consecutive jobs and within the first tasks and second

tasks of the long jobs. The size of both gaps is at most L2. Thus, the total

gap is at most τ ≤ 2L2 ≤ n and we are done.

Case C. There is no interleaved short job in the FFD schedule at all.

Similar to the Case B, we get that the total gap is at most τ ≤ 2L2.

Now, we can suppose that the number of long-consecutive jobs is n2,lc >

0, otherwise the schedule is optimal. Any long-consecutive job could not be

scheduled as long-interleaved job, thus n2,icn + n1 > L2, where n2,icn is the

number of jobs in the incomplete block of the nested short jobs (see again
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Figure 4.3). Since in the schedule there are further short jobs which form

at least one complete block, n ≥ n2,icn + n1 + (L2 + 1) > 2L2 + 1 > τ.

Lemma 4.4. If there are neither nested nor interleaved short jobs in the

input I, then CFFDmax (I)/C ∗max(I ) ≤ 3/2 .

Proof. If the conditions are true then all short jobs are long-consecutive and

CFFDmax (I) = CSEPmax (I). Since there is no interleaved job, therefore L2 ≤ n1−1.

So, we get

CFFDmax (I) = (n1 + L1 + 1) + (n2 + L2 + 1) = n+ L1 + L2 + 2

≤ n+ (L1 + n1 + 1) =
1

2
LB1 + LB4 ≤ (3/2)C ∗max(L).

In the next lemma, we exclude the case when there is no long-consecutive

short job at all.

Lemma 4.5. If there is no long-consecutive short job in the input I, then

CFFDmax (I)/C ∗max(I ) ≤ 3/2 .

Proof. We claim that CFFDmax (I) ≤ L1+n+2. Let us consider the status when

all the long jobs are just scheduled. Now, the first n1 time slots are occupied,

and the time slots are busy from L1 + 1 to L1 + 2 + (n1 − 1) = L1 + n1 + 1.

Now let us see how the short jobs are scheduled.

First, suppose that there is no nested short job. Then all short jobs

are interleaved jobs and since L2 < L1, the second tasks of the short jobs

can be assigned continuously from the time L1 + n1 + 1, and so we have

CFFDmax (I) = (L1 + n1 + 1) + n2.

Otherwise, there are several nested jobs. Let us denote by n2,ne and n2,i

the number of nested short jobs and the number of interleaved jobs, resp.

Then n2 = n2,ne + n2,i and so n2,i < n2. Therefore,

CFFDmax (I) = (L1 + n1 + 1) + n2,i < (L1 + n1 + 1) + n2 = L1 + n+ 1,
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and so

3

2
C ∗max(I ) ≥ LB4 + LB1/2 = (L1 + n1 + 1 ) + n ≥ CFFD

max (I ).

4.1.2. Inputs with dominant instances

From the Lemma 4.4 we know that if there are neither nested nor in-

terleaved short jobs then CFFDmax (I)/C ∗max(I ) ≤ 3
2 . In this section we will

investigate those cases when one of them occurs. Let

LB = max {LB1, LB3, LB4} .

Lemma 4.6. Suppose that I is an input that contains nested short jobs in

its FFD schedule. Then there exists a dominant instance I ′ for which the

FFD schedule does not contain nested jobs.

Proof. Let z > 0, n2,i denote the number of nested and the number of

interleaved short jobs, respectively. By Lemma 4.2, we can suppose that

the FFD schedule of I does not contain complete blocks of long jobs, and

by Lemma 4.3, there is no complete block of nested short jobs. So, the

nested short jobs form an incomplete block, and their second tasks occupy

z positions just before the second tasks of the long jobs (see Figure 4.4).

Now, in I ′ let L′1 = L1 − z, and we consider the changes in the FFD

schedule of our modified input. We remark that L2 = L′1 − n1.

Claim 4.2. LB(I ′) ≤ LB(I)

Proof. Since LB1 depends on only the number of jobs therefore LB1(I) =

LB1(I ′). In I ′ the sum of the gaps are smaller than in I. Therefore, LB3 (I ′) ≤

LB3 (I ), and LB4 (I ′) ≤ LB4 (I ).
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Case A. First, we suppose that there is at least one interleaved short job

in I. Then

L2 = n1 + z + (n2,i − 1). (13)

If we schedule the items of I ′, then each earlier nested short job will be

interleaved and the interleaved short jobs remain interleaved, i.e. z′ = 0,

and n′2,i = z+n2,i. It is easy to check that after having scheduled all long jobs

and all interleaved jobs, the makespan is the same and the number of already

scheduled short jobs is also the same, i.e. n1 + z + n2,i = n1 + z′ + n′2,i. As

a consequence of (13), there is no complete block in the modified schedule.

Figure 4.4: An instance with jobs, L1 = 14, n1 = 2, L2 = 9, n2,i = 5, and z = 3.

Figure 4.5: The modified instance with L′1 = 11, n1 = 2, L2 = 9, n′2,i = 8.

By finishing the schedule with the remained short jobs (that all will be long-

consecutive jobs), the makespan of the FFD schedule does not change. So,

applying the Claim 4.2 we get CFFDmax (I ′)/LB(I ′) > CFFDmax (I)/LB(I).

Case B. Now assume that there is no interleaved short job while FFD

schedules items of I. Let us denote the number of long-consecutive jobs by

nlc. It is clear that the FFD schedule of I ′ does not contain complete block

from the long-consecutive short jobs. Now, after the scheduling of the long

jobs, the last occupied timeslot in I ′ will be z unit earlier, and the number

of nested jobs is z′ = 0. The schedule will contain n′2,i = z new interleaved

short jobs, therefore – before the FFD schedules the long-consecutive short
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jobs – the makespan of the two schedules is equal. Since the number of

long-consecutive short jobs have not changed, CFFDmax (I ′) = CFFDmax (I), and –

using again Claim 4.2 we get the desired inequality.

Figure 4.6: An instance without interleaved jobs L1 = 13, n1 = 2, L2 = 6, n2 = 7, z = 5.

Figure 4.7: The modified instance with L′1 = 8, n1 = 2, n2,i = 5, L2 = 6, n2 = 7.

Lemma 4.7. Let I be an instance for which the FFD schedule contains

interleaved short jobs. Then there exists a dominant instance I ′ for which

in the FFD schedule the first short job is an interleaved short job, and L2 =

L1 − n1.

Proof. There are no nested jobs, therefore L2 ≥ L1 − n1. Then I ′ must

contain at least one interleaved job. If L2 = L1 − n1 then we are ready,

I ′ = I. Let L2 = L1 − n1 + z, where z > 0, integer.

Figure 4.8: An instance with L1 = 10, n1 = 7, n2 = 4, L2 = 7, and z = 4

Let us make a modified input I ′ where n′1 = n1 − z and n′2 = n2 + z. Note

that the number of jobs does not change. Now, having scheduled the long

jobs and the interleaved short jobs by FFD the makespan is the same as
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Figure 4.9: The modified instance with L1 = 10, n′1 = 3, n′2 = 8, and L2 = 7

earlier, and the number of already scheduled short jobs is increasing by z.

So, finishing the schedule with the remained short jobs (that all will be

long-consecutive jobs), the value of the FFD schedule remains the same.

Let us see how the lower bound changes. LB1 does not change, LB3

will be smaller, and LB4 decreases by z. Therefore, LB will not increase,

thus for I′ still holds that CFFDmax (I ′)/LB(I ′) > CFFDmax (I)/LB(I).

Now, we will investigate the structure of the long-consecutive short jobs.

Lemma 4.8. Let I be an instance that its FFD schedule does not contain

nested short jobs, contains interleaved and long-consecutive short jobs. Then

there exists such a dominant instance I ′ which contains exactly one long-

consecutive short job.

Proof. Suppose there are at least z + 1 long-consecutive short jobs, where

z ≤ L2. We derive the following instance: let L′1 = L1 + z and L′2 = L2 + z.

Note that the number of jobs does not change.

Figure 4.10: Instance with z = 2 short jobs in long-consecutive block.

Figure 4.11: Modified input with z = 0 short jobs in long-consecutive block.

21



Now after scheduling the long jobs, the last occupied time slot will be z

units later. Since L′2 > L2, the number of interleaved jobs increases by z,

and just after scheduling the interleaved jobs, the corresponding makespan

increased by 2z. So, if it was previously t, now it is t + 2z. The number

of the remained short jobs is decreased by z, but since L2 is also increased

by z, the increment comparing to t + 2z is the same, as the increment was

comparing to t in the previous input. It means that the makespan of the

FFD schedule increases by 2z.

Let us see how the lower bound changes. LB1 does not change, LB3

will be increased by z, and LB4 also grows by z. This means that LB in-

creases by at most z. Therefore, for I ′ it still holds that CFFDmax (I ′)/LB(I ′) >

CFFDmax (I)/LB(I), as the numerator increased by 2z, while the denominator

increased by at most z.

4.1.3. The upper bound

In the previous subsections we have found some instances with perfor-

mance ratio ≤ 3/2, and also some instances have been analysed for which

the FFD schedules have dominant examples with given structures. There-

fore the following proposition is true.

Proposition 4.1. If we want to find an instance I with CFFDmax (I)/LB(I) >

3/2 then we have to analyse those cases for which the FFD schedule

(a) does not contain complete blocks (Lemma 4.2, Lemma 4.3),

(b) does not contain nested short jobs (Lemma 4.4, Lemma 4.6),

(c) contains interleaved short jobs (Lemma 4.4, Lemma 4.7),

(d) the idle time of the short jobs is L2 = L1 − n1 (Lemma 4.7),

(e) contains exactly one long-consecutive short job (Lemma 4.5, 4.8).

Let I be an example, which satisfies the conditions (a)-(e). From Propo-

sition 4.1 the following simple assumptions follow.

- n1 < L1 + 1, results in a schedule with one – incomplete – block of
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long jobs, and after having scheduled the long jobs an idle time starts

up with size L1 − n1 + 1 > 0.

- L2 + 2 > L1 − n1 + 1, to avoid nested short jobs. We will investigate

those special inputs where L2 = L1 − n1, which results in the longest

short jobs in the instance.

- L2 ≥ n1, results in several interleaved jobs.

- n2 = L2 − n1 + 2. Using this condition, FFD schedules as much

interleaved jobs as possible and just one short job remains. This lonely

short job will be a long-consecutive job.

As consequence of the assumptions above, if an instance I disposes of the

characteristics above, the following facts are true.

Fact 4.1. From the conditions it follows that L2 = L1 − n1 ≥ n1, and so

L1

n1
≥ 2. (14)

Fact 4.2. After scheduling the long jobs we have

CFFDmax (I1) = L1 + 2 + n1 − 1 = L1 + n1 + 1. (15)

Fact 4.3. After scheduling the interleaved jobs we have

CFFDmax (I) = (L1 + n1 + 1) + (L2 − n1 + 1) = L1 + L2 + 2. (16)

Fact 4.4. After scheduling the last short job we have

CFFDmax (I) = (L1 + L2 + 2) + L2 + 2 = L1 + 2L2 + 4. (17)

We compare CFFDmax (I) and C ∗max(I ). Estimating the optimal solution,

we use the lower bound LB3. To do that, let us express L2 and n2 as the

variables of L1 and n1. Applying L2 = L1 − n1 and n2 = L2 − n1 + 2 =

L1 − 2n1 + 2, we get

CFFDmax (I) = L1 + 2L2 + 4 = 3L1 − 2n1 + 4.
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and

C ∗max(I ) ≥ n1 + (L1 − 2n1 + 2) +
n1L1 + (L1 − 2n1 + 2)(L1 − n1)

n1 + L1 − 2n1 + 2
+ 1

= L1 − n1 + 3 +
n1L1 + (L1 − 2n1 + 2)(L1 − n1)

L1 − n1 + 2

Let us introduce the new variable x = L1/n1. Then we can express the

previous values as CFFDmax (I)/n1 = 3x− 2 + 4/n1 and

C ∗max(I )

n1
≥ x− 1 +

3

n1
+
x+ (x− 2 + 2

n1
)(x− 1)

x− 1 + 2
n1

.

For the sake of simpler notation we introduce the substitution 1/n1 = a.

Then we get

CFFDmax (I)

C ∗max(I )
≤ 3x− 2 + 4a

x− 1 + 3a+ x+(x−2+2a)(x−1)
x−1+2a

=
(3x− 2 + 4a)(x− 1 + 2a)

(x− 1 + 3a)(x− 1 + 2a) + x+ (x− 2 + 2a)(x− 1)
(18)

=
(3x− 2 + 4a)(x− 1 + 2a)

6a2 − 7a+ 7ax+ 2x2 − 4x+ 3

and we are interested in the maximum of the right hand side. Because of

the inequality (14), we can suppose that 2 ≤ x.

Lemma 4.9. If for an instance I, 2 ≤ x ≤ 4 then

CFFDmax (I)

C ∗max(I )
≤ 30

19

Proof. Applying the equality (18), our claim is equivalent with

3x2 + (20a− 25)x+ (28a2 − 58a+ 52) ≥ 0 (19)

Here, the discriminant is

D(a) = (20a− 25)2 − 4 · 3 · (28a2 − 58a+ 52) = 64a2 − 304a+ 1.

Recall that a = 1/n1 where n1 is integer, thus 0 < a ≤ 1. It is easy to

see that D′(a) = 128a− 304 < 0 in the whole (0; 1] interval. Thus, D(a) is
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decreasing. The unique solution of D(a) = 0 in the considered interval is

19
8 −

3
4

√
10 ≈ 0.0032918 which means that D(a) < 0 for 19

8 −
3
4

√
10 < a ≤ 1,

or in equivalent form, n1 < 1/(198 −
3
4

√
10) ≈ 303.79.

Now let us suppose that 0 < a ≤ 19
8 −

3
4

√
10 which means that n1 ≥ 304.

Then, the equation (19) has two solutions, which are x1,2 = 25
6 −

10
3 a ±

1
6

√
64a2 − 304a+ 1. We state that both solutions are strictly bigger than 4.

It suffices to see that the smaller root is bigger than 4, i.e.

1

6
− 10

3
a− 1

6

√
64a2 − 304a+ 1 > 0,

By simple calculation, we get 24a (14a+ 11) > 0, which holds. This means

that the function in the left hand side in (19) is positive, if x ≤ 4.

Lemma 4.10. If for an instance I, 4 < x, then

CFFDmax (I)

C ∗max(I )
≤ (3x− 2)(x− 1)

2x2 − 4x+ 3
≤
√

11 + 3

4
≈ 1.579156.

Proof. Applying (18), we have to prove the following inequality.

(3x− 2 + 4a)(x− 1 + 2a)

6a2 − 7a+ 7ax+ 2x2 − 4x+ 3
≤ (3x− 2)(x− 1)

2x2 − 4x+ 3
, (20)

which is equivalent to the following inequality.

a(2x2 + 2x− 12) + x3 − 13x+ 10 ≥ 0.

In the left hand side 2x2 + 2x − 12 = 2 (x+ 3) (x− 2) ≥ 0 because x ≥ 2.

Moreover, it is easy to see that for x ≥ 4

x3 − 13x+ 10 > x3 − 13x− 12 = (x+ 3) (x− 4) (x+ 1) ≥ 0

.

Now we are interested in the biggest possible value of (3x−2)(x−1)
2x2−4x+3

, con-

sidering that x ≥ 4. To prove this, it is enough to see that

(3x− 2) (x− 1)

2x2 − 4x+ 3
−
√

11 + 3

4
≤ 0. (21)
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The left hand side can be transformed as follows.

(3x− 2) (x− 1)

2x2 − 4x+ 3
−
√

11 + 3

4
=

3−
√

11

4

(
x− 1

2

√
11− 5

2

)2
x2 − 2x+ 3

2

.

Since 3 −
√

11 < 0 and x2 − 2x + 3
2 > 0 if x > 4, the inequality in (21) is

true.

4.2. The lower bound

In this section, we give lower bounds for the performance ratio of FFD.

Lemma 4.11. Let I(n, k) be an instance which contains n = n1 + n2 = 9k

jobs, where n1 = 3k and n2 = 6k pieces of long and short jobs, respectively.

Let us suppose that L1 = 12k − 2 and L2 = 9k − 2. Then

lim sup
k→∞

CFFDmax (I(n, k))

C ∗max(I (n, k))
=

30

19
.

Proof. After having scheduled long jobs there is a gap of 9k − 1 among the

two tasks of the items. Figure 4.12 shows the status when every long job of

I(n, k) has been scheduled.

Figure 4.12: Status when all long jobs are scheduled by FFD.

Since a short job needs 9k positions, FFD can not schedule any short

job as nested job in the gap of long jobs. So, FFD will start to schedule

interleaved short jobs.

FFD will schedule the first item in such a way that its second task

occupies the first empty position after the last task of the long jobs. It

occupies the positions 6k + 2 and 15k positions for the first and the second
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tasks, respectively. (The tasks occupy the units [6k + 1, 6k + 2] and [15k −

1, 15k]. It is clear that the position 15k was free. Similarly, the position

6k+2 is also free. So, the first interleaved short job can be scheduled in this

position. Following this idea, FFD can schedule (12k − 1) − (6k) = 6k − 1

interleaved short jobs. The second task of the last interleaved short job

occupies the position 21k − 2.

Figure 4.13: Status when all the jobs of I(n, k) are scheduled by FFD.

The remaining short job needs L2 + 2 units to be completed. Therefore,

the makespan of the instance I(n, k) produced by the algorithm FFD is

CFFDmax (I(n, k)) = 21k − 2 + L2 + 2 = 30k − 2. For the instance I(n, k)

⌈ 1

n

( n∑
i=1

li − n(n− 1)
)⌉

= k − 1 ≥ 0,

therefore, we can apply LB2 , and so C∗(I(n, k)) ≥ 19k − 1. Therefore,

lim sup
k→∞

CFFDmax (I(n, k))

C ∗max(I (n, k))
≤ 30k − 2

19k − 1
(22)

To prove that the right hand side of the inequality (22) is tight, we

consider the following feasible schedule of the instance I(n, k). We schedule

three times k pieces of long jobs and 2k pieces of short jobs at the earliest

possible time. We illustrate the schedule on the Figure 4.14 for the case

k = 2.

Figure 4.14: An optimal schedule of the instance I(n, k) if k = 2.
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It is easy to check that all the positions are occupied except those ones which

are between the first task of the last interleaved short job and the second

task of the first nested short job. So the gap in this schedule is:

(12k − 2)− [(k − 1) + 2k + 3k + 3k + 2k] = k − 1.

So,

C∗(I(n, k)) ≤ 2n+ (k − 1) = 19k − 1. (23)

Therefore

lim sup
k→∞

CFFDmax (I(n, k))

C ∗max(I (n, k))
≥ 30k − 2

19k − 1
(24)

Taking the inequalities (22) and (24), we get the desired result.

Combining the results in the Lemma 4.9, Lemma 4.10, and Lemma 4.11

we get the following theorem.

Theorem 4.1. For those problems where we only have jobs with two differ-

ent idle times, the worst-case ratio of the FFD algorithm is

1.57894 . . . =
30

19
≤ ρFFD ≤

√
11 + 3

4
= 1.579156 . . . ,

and the lower bound is tight if L1/n1 ≤ 4.

5. Conclusions

In this paper, we investigated a special case of CTP problem where the

tasks have unit length and there are only two different gaps. This special

case is denoted by the three-field notation as

1|Coup-Task, exact li ∈ {L1, L2}, ai = bi = 1|Cmax.

We considered the First Fit Decreasing (FFD) algorithm where the jobs are

scheduled in greedy way according to their delay time: the larger the delay
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time, the sooner the schedule. We were looking for the absolute worst case

ratio of FFD, and we proved that the worst-case ratio of FFD is in the

interval [1.57894 . . . , 1.57916 . . .).

Several open problems remain for further research. What is the tight

bound for the case x = L1/n1 > 4? Our conjecture: 30
19 is the tight bound.

Another exciting question: how can we determine the complexity of the

UET problem with 2 different delays.

Even though we considered a very special case, it is visible that the

analysis is quite hard. We hope that this paper helps to understand the

structure of the problem for those cases when at least three different delay

times are present. Maybe the first step in this direction is to analyse the

case with 3 different delay times. Our experiments show that the bound

decreases. Finally, is it even possible to analyse the algorithm FFD for the

general case of the UET problem?
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