Abstract: The Euler characteristic plays an important role in many subjects of discrete and continuous mathematics. For noncompact spaces, its homological definition, being a homotopy invariant, seems not as important as its role for compact spaces. However, its combinatorial definition, as a finitely additive measure, proves to be more applicable in the study of singular spaces such as semialgebraic sets finitely subanalytic sets, etc. The author introduces an interesting integral by means of which the combinatorial Euler characteristic can be defined without the necessity of decomposition and extension as in the traditional treatment for polyhedra and finite unions of compact convex sets. Since finite unions of closed convex sets cannot be obtained by cutting convex sets as in the polyhedral case, a separate treatment of the Euler characteristic for functions generated by indicator functions of closed convex sets and relatively open convex sets is necessary, and this forms the content of this paper.
Abstract: The author shows that if a numerical homotopy invariant of finite simplicial complexes has a local formula, then, up to multiplication by an obvious constant, the invariant is the Euler characteristic. Moreover, the Euler characteristic itself has a unique local formula.
Abstract: The Dehn-Sommerville relations and the corresponding equations for the angle sums are used to derive two expressions for the Euler characteristic of a simplicial manifold, firstly in terms of the numbers of even dimensional subsimplices, and secondly in terms of even-dimensional deficit angles. In each case the coefficients involved are related to the Bernoulli numbers.
Proofs of Euler's Formula.
From the Geometry Junkyard,
computational
and recreational geometry pointers.
David Eppstein,
Theory Group,
ICS,
UC Irvine.
Semi-automatically filtered from a common source file. Last update: 27 May 2001, 09:24:41 PDT.